Construction of asymptotically good locally repairable codes via automorphism groups of function fields
نویسندگان
چکیده
Locally repairable codes have been investigated extensively in recent years due to practical application in distributed storage as well as theoretical interest. However, not much work on asymptotical behavior of locally repairable codes has been done until now. In particular, there is a little result on constructive lower bound on asymptotical behavior of locally repairable codes. In this paper, we extend the construction given in [2] via automorphism groups of function field towers. The main advantage of our construction is to allow more flexibility of locality. Furthermore, we show that the Gilbert-Varshamov type bound on locally repairable codes can be improved for all sufficiently large q.
منابع مشابه
Construction of optimal locally repairable codes via automorphism groups of rational function fields
Locally repairable codes, or locally recoverable codes (LRC for short) are designed for application in distributed and cloud storage systems. Similar to classical block codes, there is an important bound called the Singleton-type bound for locally repairable codes. In this paper, an optimal locally repairable code refers to a block code achieving this Singleton-type bound. Like classical MDS co...
متن کاملOptimal locally repairable codes of distance 3 and 4 via cyclic codes
Like classical block codes, a locally repairable code also obeys the Singleton-type bound (we call a locally repairable code optimal if it achieves the Singleton-type bound). In the breakthrough work of [14], several classes of optimal locally repairable codes were constructed via subcodes of Reed-Solomon codes. Thus, the lengths of the codes given in [14] are upper bounded by the code alphabet...
متن کاملOptimal locally repairable codes via elliptic curves
Constructing locally repairable codes achieving Singleton-type bound (we call them optimal codes in this paper) is a challenging task and has attracted great attention in the last few years. Tamo and Barg [14] first gave a breakthrough result in this topic by cleverly considering subcodes of Reed-Solomon codes. Thus, q-ary optimal locally repairable codes from subcodes of Reed-Solomon codes giv...
متن کاملLinear Locally Repairable Codes with Random Matrices
In this paper, locally repairable codes with all-symbol locality are studied. Methods to modify already existing codes are presented. Also, it is shown that with high probability, a random matrix with a few extra columns guaranteeing the locality property, is a generator matrix for a locally repairable code with a good minimum distance. The proof of this gives also a constructive method to find...
متن کاملOn Sequential Locally Repairable Codes
We consider the locally repairable codes (LRC), aiming at sequential recovering multiple erasures. We define the (n, k, r, t)SLRC (Sequential Locally Repairable Codes) as an [n, k] linear code where any t(≤ t) erasures can be sequentially recovered, each one by r (2 ≤ r < k) other code symbols. Sequential recovering means that the erased symbols are recovered one by one, and an already recovere...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1711.07703 شماره
صفحات -
تاریخ انتشار 2017